If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+8a+5=0
a = 2; b = 8; c = +5;
Δ = b2-4ac
Δ = 82-4·2·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{6}}{2*2}=\frac{-8-2\sqrt{6}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{6}}{2*2}=\frac{-8+2\sqrt{6}}{4} $
| 45=s/6+42 | | x2+3=27 | | 136=16b | | f/4-34=-27 | | 5/x-2=5/5 | | 12n^2+18n=0 | | 41=15+19+x | | x2-2085=124 | | 9x-88+11x-72=180 | | 2t-35=13 | | 1/2(29-b)=7.75 | | 8n+1=8n+1 | | -4x+9+5x=13x | | 9(k+3)=99 | | y–(-2)=54 | | 41=15+19=x | | 14y+4y-13y=10 | | 1/2(10x-2)+6=6+2x+2x | | 5(x+3)+9=3(x-6)+6 | | x2-13=87 | | x2+136=140 | | d/10-93=-89 | | 6(x=12)=42 | | 5e+2(3e+9)=7e+24 | | 81=5x+9+4x | | 4x+6+3x-9=18 | | 180=75+5+25x | | 6y+22=82 | | 52=y÷10 | | 11=n-(-14) | | 6x-5=2(2x+1)+3 | | 7=0.2x+0.8 |